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Artificial intelligence (AI) is becoming established as a new method for analysing ophthalmological data, and unveiling new clinical 
and pathogenic insights into retinal diseases. AI-based algorithms are largely employed in the field of the most prevalent retinal 
diseases, including diabetic retinopathy, age-related macular degeneration and myopia. Several research groups are also testing 

AI in other retinal diseases, including inherited retinal dystrophies, retinopathy of prematurity, central serous chorioretinopathy and retinal 
vein occlusion. AI models are mainly used in screening of the fundus and structural optical coherence tomography images. However, more 
advanced methodologies are under investigation to extract clinically relevant information regarding the biomarkers of disease activity and 
outcome measures. AI is a powerful tool for increasing the amount of information obtained in clinical and research contexts. However, many 
issues still need addressing, including the resulting high demand for technology and resources, and the need for very large databases. 
Moreover, several ethical issues require debate, and specific rules are needed to govern the use of AI algorithms and check the quality of the 
analysed data. This article reviews the current use of AI in retinal diseases, unmet needs and future perspectives.

Article highlights
•	 Artificial intelligence (AI) represents a powerful way of analysing a large amount of data, 

extracting those features characterizing a given disease or condition.

•	 AI-based models have been largely tested in the main retinopathies, including age-related 

macular degeneration, diabetic retinopathy and myopia.

•	 AI algorithms have been highly effective in screening for retinopathies.

•	 The same approaches have unveiled potentially relevant biomarkers of disease progression 

and complications.

•	 Future efforts should focus on developing data quality checks and validating methodologies 

to reliably assess the contribution of AI-based models in clinical and research settings.

Background: Artificial intelligence and its application in ophthalmology
The term 'artificial intelligence' first appeared in 1956.1 One of the most frequently used definitions 

comes from a paper by Kaplan and Haenlein, who defined AI systems as having “the ability to 

process external data systematically and learn from it to achieve specific goals and tasks”.2

The rapid growth of AI-based approaches in several disciplines stimulated the application of this 

technology in medicine. AI includes different possible approaches, which are usually categorized 

according to the method used to present a given problem to the machine. In particular, we can 

distinguish machine learning (ML) and deep learning (DL) technologies.

ML is defined as "computers' ability to learn without being explicitly programmed”.3 In brief, 

ML uses raw data to extract learning information to train the algorithm and build models. There 

are different approaches in ML, the descriptions of which are beyond the scope of this review. 

Overall, ML approaches can be supervised or unsupervised, depending on the presence of human 

supervision.3

DL is an evolution based on a more complex extraction and analysis of data. Indeed, DL involves 

the use of deep neural networks, a complex multi-layer organization that is able to extract and 

elaborate complex patterns in data and to perform much more advanced and reliable analyses.4–6 

The main differences between ML and DL are as follows:

•	 Data requirements: DL requires more data than ML to train the model on the basis of much 

more complex patterns.

•	 Extraction of the features: ML models usually manually extract the features from the data to 

train the model, whereas DL algorithms are able to automatically learn the features from the 

data.

•	 DL requires higher computational power and costs more than ML.
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•	 Interpretation: ML models are usually easier to interpret than DL 

models.

The main AI models are graphically summarized in Figure 1. A schematic 

of the main differences between ML and DL is shown in Figure 2.

Both ML and DL base data processing on artificial neural networks. That 

is, an imitation of the neural structure of the central nervous system. 

The information is then divided into different layers to facilitate data 

elaboration and the processing of inputs to outputs.

Considering all these characteristics, ophthalmology is well suited to 

the requirements of AI model development. Indeed, thanks to current 

diagnostic approaches, ophthalmologists can acquire very large 

datasets that are highly reliable, high quality and non-invasive way. This 

is particularly true in the medical retina field, where non-invasive multi-

modal retinal imaging represents the cornerstone of retinal diagnostics.7

In this article, we provide an updated overview of AI application for the 

most common retinal diseases.

Methods
We searched all English language and human subject articles using a 

keyword search of the MEDLINE library. Keywords included the following: 

artificial intelligence, machine learning, deep learning, macular disease, 

retinal disease, retinopathy and maculopathy. All the references were 

carefully examined by two expert researchers (FB, AA), who collected 

and ordered all the relevant information according to the main topic of 

the review.

Artificial intelligence models in diabetic retinopathy
Diabetic retinopathy (DR) represents a major cause of visual impairment 

in developed countries. The ever-growing incidence of DR and its 

complications necessitates new strategies to screen patients, prevent 

complications and optimize management. For this reason, DR is a major 

target of AI-based models, especially those that can be used for large-

scale screening. AI models should recognize DR-related alterations, such 

as haemorrhages, exudates, cotton wool spots and neovascularization; 

and, starting from fundus images, establish the presence or absence of 

DR, and grade it according to the conventional DR grading scales.

Several AI systems have been developed to reach this goal. The IDx-DR 

system (Digital Diagnostics, Coralville, IA, USA) combines the results from 

DR-related biomarkers to grade DR. It was included in the Iowa Detection 

Program and tested in Caucasian, North African and sub-Saharan 

populations. This included images from 3,640 participants in the Nakuru 

Eye Study in Kenya, and reached a sensitivity of 87% and a specificity 

of 70%.8 The IDx-DR system was also tested in the Messidor-2 dataset 

(ADCIS, Saint-Contest, France) – which was established to facilitate the 

testing of computer-assisted diagnosis of DR – including fundus images 

Figure 1: Schematic representation of the main artificial intelligence algorithms based on machine learning and deep learning

Figure 2: Schematic of the main workflow differences between machine learning and deep learning
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of 1,748 eyes (874 patients), with a sensitivity of 97% and a specificity 

of 59%.9,10 Similar results have have also been achieved in real-life 

settings.11 Thanks to these good results, IDx-DR obtained approval from 

the United States Food and Drug Administration in 2018.12 The device can 

also work in conjunction with the Topcon NW400 non-mydriatic fundus 

camera (Topcon Healthcare, Tokyo, Japan).13

The RetmarkerDR software (Critical Health SA, Coimbra, Portugal) is a 

Conformité Européene-marked class IIa medical device capable of 

distinguishing DR from non-DR eyes and measuring the microaneurysm 

turnover rate during follow-up.14,15 The system had a sensitivity of 

73% for any DR, 85% for referable DR and 98% for proliferative DR.16 A 

similar system is EyeArt (Eyenuk Inc., Woodland Hills, CA, USA), which 

has a sensitivity of 95% for any DR, 94% for referable DR and 99.6% for 

proliferative DR.16 EyeArt was also tested on the Messidor-2 dataset, 

reaching a sensitivity of 94% and a specificity of 72%.17 EyeArt was 

implemented in smartphone-based DR screening of 296 patients, with 

a sensitivity of 96% for any DR, 99% for referable DR and 99% for sight-

threatening DR.18 More recently, this tool has been employed on a dataset 

of more than 30,000 images, with a sensitivity of 96% for referable DR.19

Other systems with similar sensitivities and specificities are a Google 

Inc. sponsored system (Mountain View, CA, USA),20 Bosch DR Algorithm 

(Robert Bosch, GmbH, Gerlingen, Germany),21 a system developed by 

the Singapore National Eye Centre, Singapore Eye Research Institute 

and National University of Singapore School of Computing,22 RetinaLyze 

(Retinalyze A/S, Hørsholm, Denmark)23–25 and EyeWisdom® (Visionary 

Intelligence Ltd [Vistel], Beijing, China).26 Further AI-based DR screening 

systems are listed in the recent review by Grzybowski et al.27 The high 

reliability of AI-based screening has been further supported by a recent 

study testing a DL algorithm to analyse 14 common retinal alterations by 

using more than 200,000 fundus images derived from 16 clinical settings 

with different disease distributions.28

Another application of AI in the DR setting is in the grading and 

staging of the disease. Indeed, it is assumed that AI models may help 

ophthalmologists to optimize the detection and analysis of DR-related 

alterations, thus optimizing DR diagnostic work-up. Gulshan et al. tested 

AI for this purpose in 2016, achieving very high sensitivity and specificity in 

categorizing DR severity and the presence of diabetic macular oedema.20 

Ting et al. supported these findings in 2017 by analysing almost half a 

million images.22

Artificial intelligence models in age-related macular 
degeneration
Age-related macular degeneration (AMD) represents another leading 

cause of visual impairment in developed countries and a major target 

for AI-based approaches. The analysis of AMD data is mainly based on 

optical coherence tomography (OCT) images; thus, image segmentation 

is a fundamental step for accurately recognizing retinal structures. Many 

unsupervised AI-based segmentation algorithms have been developed, 

providing very high performance in detecting retinal features.29–33 These 

algorithms are useful not only for assessing the integrity of retinal 

structures, but also for localizing and quantifying retinal fluids during 

follow-up. Many approaches have been proposed in recent years, 

providing comparable results in terms of reliability, and these have been 

excellently reviewed by Schmidt-Erfurth et al.34

Interestingly, AI has facilitated further progress in the AMD field, helping 

to assess treatment responses and factors predicting visual outcome. 

Moraes et al. used AI to assess distinctive features in first- and 

second-treated AMD eyes, highlighting differences in terms of AMD-

related lesion prevalence and the course of the disease.35 Similarly, AI 

has proved useful in quantifying drusen and assessing their topographic 

distribution, both in fundus and OCT images, as well as for analysing 

hyper-reflective foci on OCT scans in early to intermediate AMD stages. 

These factors were used to calculate the risk of disease progression 

and onset of complications.36–38 In this context, Schmidt-Erfurth et al. 

provided important contributions regarding the use of AI in AMD:

•	 predicting the risk of AMD progression;39

•	 highlighting the prognostic importance of intra-retinal cystoid fluid in 

neovascular AMD;40

•	 developing automatic approaches for calculating fluid volumes to 

improve therapeutic management of neovascular AMD;41

•	 assessing the efficacy profiles of two different anti-vascular 

endothelial growth factor drugs.42

More recently, AI has successfully predicted visual outcomes for a treat-

and-extend regimen, by using the changes in intra-retinal and sub-retinal 

fluids after single injections as predictive factors.43 AI-based approaches 

were useful for segmenting images of macular neovascularizations and 

for quantifying leakage on fluorescein angiography.44 However, although 

fluid changes have been investigated as important predictive biomarkers 

in neovascular AMD, a recent AI-based study found no significant 

relationship between OCT angiography characteristics of the macular 

neovascularizations and the response to treatments.45

Moving beyond neovascular complications, AI has also been employed in 

the setting of geographic atrophy, based on the high reliability of AI-based 

algorithms to detect atrophic margins and to follow the expansion over 

time.46–51 Recently, AI has been tested alongside a novel treatment for 

geographic atrophy, namely pegcetacoplan. AI-based models were 

useful in calculating the topography and progression rate of geographic 

atrophy,52 as well as in quantifying photoreceptor thinning and loss over 

time.53

A very interesting application of AI-based technology is in self-monitoring 

of macular status. One such system is the Notal Vision Home OCT (Notal 

Vision, Manassas, VA, USA). In a recent study, patients performed daily 

self-imaging at home using this system for 3 months, with the aim of 

daily monitoring neovascular activity by OCT images and AI-based 

elaboration. This system turned out to be feasible and fast, showing very 

good agreement with expert-based grading of disease activity.54 A similar 

self-monitoring strategy was tested in dry AMD with the ForeseeHome 

system (Notal Vision). This device collected clinical data from 2,123 

patients over a mean duration of 3 years, and was highly feasible and 

useful in detecting changes in visual acuity and producing alert signals 

regarding the risk of disease progression.55

Artificial intelligence models in myopia
Myopia is a global epidemic that is predicted to affect almost 50% of 

the world’s population by 2050.56 High myopia, defined as a spherical 

equivalent of 5.00 D or more, is a common finding, leading to potentially 

vision-threatening complications, such as myopic maculopathy and 

retinal detachment. Therefore, the development of even more powerful 

diagnostic approaches is fundamental to guaranteeing optimal 

management of myopic complications, and AI can play a major role 

in this field. Several AI algorithms have been tested to detect signs of 

pathological myopia both in fundus and OCT images.57–63 All these 

algorithms showed high reliability and sensitivity in detecting myopic 

alterations, with area under the curve values in most cases being ≥0.9.
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The ability of AI-based models to improve the detection of pathological 

myopia paves the way for earlier diagnosis of myopic complications, and 

better management.64 Similarly, AI has been employed for the prediction 

of myopia progression and calculation of the risk of developing high or 

even pathological myopia.65–67 The use of AI-based models in myopia 

has gone beyond the retinal field, with applications also in refractive and 

cataract surgeries to improve pre-surgical calculations and refractive 

outcomes.68–71

New frontiers for the use of artificial intelligence 
models in retinal diseases
Although DR, AMD and myopia undoubtedly represent major diseases 

of interest for AI-based models, the potential for more extensive 

employment of AI methods in other retinal diseases is now also more 

likely. This includes other common retinal diseases, such as retinal 

vein occlusion, central serous chorioretinopathy and vitreoretinal 

disorders.72–79

AI has been tested in inherited retinal dystrophies to segment retinal 

structures on OCT, to detect atrophic changes and to follow all these 

alterations over time. In particular, AI models have been used in retinitis 

pigmentosa,80–82 choroideremia80,83 and Stargardt disease.81,84–86 The 

intriguing goal in this field is to improve characterization of patients 

with inherited retinal dystrophies and to study the genotype–phenotype 

correlations in very large cohorts of patients.

Another field of interest for AI models is retinopathy of prematurity 

(ROP), which is a major ophthalmological problem worldwide and a 

diagnostic clinical challenge.87 Many AI-based algorithms have been 

tested to screen for ROP and/or monitor disease progression.88–93 The 

diagnostic improvement of ROP provided by AI models could allow 

earlier identification and prompt treatment, which would reduce the 

impact on visual function and improve patients’ quality of life. Recently, a 

large study validated a vascular severity score as an appropriate output 

for AI-based models, finding a good correlation with the International 

Classification of Retinopathy of Prematurity staging system and paving 

the way for expanded use of AI algorithms in diagnosing ROP.94 Although 

the data available in the current literature should not be considered 

conclusive, more extensive use of AI-based approaches in both clinical 

practice and research is likely.

Current limitations of artificial intelligence models: The 
other side of the medal
Although the contribution of AI-based algorithms is clear to the entire 

scientific community, the extensive use of AI technology is affected by 

several issues. First, the clinical validation of AI findings is mandatory 

to definitively assess the use of AI models in ophthalmology. Indeed, 

up to now, no standardized methods for evaluating the accuracy and 

robustness of AI methodology and findings have been developed. This 

limitation means that AI technologies are currently only used in research.

Major AI-related issues concern the usability, accessibility and cost 

demands of AI technologies. Indeed, AI models are expensive and require 

advanced technical skills and computational power, which strongly limits 

their use in areas with limited resources. In addition, AI algorithms require 

big data, which are difficult to collect in clinical practice. The feasibility of 

collecting data in daily practice, and the potential for patient distress in 

obtaining the data, should be carefully considered. The requirement for 

large amounts of data also leads irremediably to high heterogeneity in 

data quality. Indeed, we may assume that not all the data included in AI 

models are characterized by the same level of quality. For this reason, 

new ways of checking and classifying data quality are mandatory to 

improve the accuracy and relevance of the output from AI models.

Another major pitfall relates to data privacy and cybersecurity, given 

that AI technologies are often connected to the web. In addition, AI 

models are strongly associated with telemedicine strategies, with 

the potential for ethical biases, which should be carefully addressed. 

Although telemedicine has the undoubted advantage of increasing 

access to diagnostic procedures and reducing the burden for hospitals, 

it is impersonal and could significantly undermine the doctor–patient 

relationship and the inter-human emphatic exchanges that are the basis 

of care.95 Moreover, automating data analysis and interpretation provided 

by AI models is not synonymous with competence. AI technologies do 

not have the necessary expertise, intuition or critical thinking that are 

fundamental to properly interpreting findings and to reaching a diagnosis 

and considering therapeutic solutions. Therefore, human input will always 

be needed to process the output of AI technologies.

Conclusions
The current article provides an up-to-date review of AI-based 

technologies in retinopathies. AI has huge potential to improve the 

diagnostic work-up and management of retinopathies. Moreover, some 

studies have shown promising results in using AI-based approaches 

for the daily self-monitoring of patients. Currently, AI algorithms are 

mainly confined to research settings, especially in screening for the 

main retinopathies and identifying possible biomarkers of progression. 

However, the rapid growth of AI-based models is likely to result in wider 

adoption of these approaches both in clinical and research settings in 

the future. Caution is advised as power without control is potentially 

dangerous and many unmet needs remain. Novel methods for checking 

data quality and for validation are warranted to guarantee appropriate 

and responsible employment of AI technology in ophthalmology and 

healthcare systems. q
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