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Nonetheless, the realization that oxygen was an essential component of 

the cross-linking reaction meant that the UV-A-riboflavin photochemical 

reaction and the depth of its effect in the stroma during cross-linking 

could be accurately modelled. This finding allowed our group to 

generate an algorithm that could predict the depth of cross-linking 

based on the measured depth of a patient’s cornea with atmospheric 

oxygen, Dresden protocol-style epithelial removal and UV irradiation at  

3  mW/cm².28 This algorithm, called ‘sub400’ (Figure 1), incorporates 

Fick’s law of diffusion, estimates of riboflavin and oxygen diffusion, and 

UV energy exposure calculations using the Lambert-Beer law of light 

absorption.29,30 The sub400 algorithm could therefore be used to calculate 

individualized irradiation durations that would generate the desired depth 

of the cross-linking effect. This raised the possibility that thin corneas 

could be cross-linked, retaining a 70 µm uncross-linked safety margin at 

the base of the stroma, without resorting to methods that modify corneal 

thickness. In other words, CXL could be adapted and individualized to the 

cornea rather than adapting the cornea to the technique.

The sub400 protocol in clinical practice
Recently, a case series was published that described the results of  

39 patients with progressive keratoconus and stromal thicknesses of 

≤400 µm (average: 343 µm; range: 214–398 µm) who were treated with 

the sub400 protocol.31 In the study, each patient’s corneal pachymetry 

was measured with a hand-held ultrasound pachymeter after epithelial 

cell debridement; then, a customized UV irradiation time, which was 

selected using a look-up table, was used at an intensity of 3 mW/cm².31 

The primary endpoint was the prevention of keratoconus progression  

1 year after the procedure. It is worth noting that many of these corneas 

would have been considered too thin to cross-link by the previous thin 

cornea cross-linking protocols; furthermore, these patients would almost 

certainly have required corneal transplantation, yet the eyes of 90% 

(35/39) of the patients showed tomographical stability after 12 months. 

No corneas showed signs of decompensation, which is in keeping with 

recent experimental evidence suggesting that the current threshold 

of endothelial damage might have been overestimated for decades.32 

The algorithm also appeared to work well, as a significant correlation 

(p=0.004) was observed between irradiation time and demarcation 

line depth. A representative case of a thin cornea treated with sub400 

protocol cross-linking is described in Figure 2.

The M protocol approach to cross-linking thin 
corneas
It is worth noting that, as a rule, modifications to the Dresden protocol 

cross-linking approach almost universally result in a shallower cross-

linking effect.33 Historically, protocols that accelerate UV irradiation 

resulted in a lower depth of cross-linking, as demonstrated by the 

demarcation line, as oxygen availability is the rate-limiting step in the UV-

riboflavin photochemical reaction; moreover, accelerating these protocols 

with higher irradiation intensities consumes oxygen faster than it can 

diffuse into the stroma. Furthermore, transepithelial, or epi-on, CXL has 

also resulted in shallower cross-linking effects. Irrespective of whether 

iontophoresis or penetration enhancers like ethylenediaminetetraacetic 

acid, trometamol or benzalkonium chloride are used to get riboflavin to 

pass through the epithelium, the intact epithelium still constrains oxygen 

Figure 2: Representative case with Kmax readings of the anterior surface of 63.6D (sagittal view), and a minimal corneal 
thickness of 325 µm. At 1 month after CXL with the sub400 protocol, the demarcation line is at 88 µm from the 
endothelium
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diffusion and absorbs UV energy, reducing the depth of cross-linking 

effect; furthermore, it is worth noting that each approach results in a 

different cross-linking depth.34

These observations led Mazzotta et al. to propose a protocol that 

integrates all available evidence on the demarcation line depths achieved 

by different cross-linking protocols and to suggest the appropriate 

protocol for any given corneal depth: the ‘M’ protocol (Figure 1).34 

However, this protocol has the drawback that surgeons would require UV 

light sources that can deliver energy at multiple intensities, as prescribed 

by these protocols (from 3–30  mW/cm²), using both continuous and 

pulsed light protocols; furthermore, it would require them to have other 

equipment (e.g. iontophoresis apparatus) available to be able to perform 

all the procedures listed. By contrast, the sub400 protocol requires only 

a single cross-linking device that can deliver the standard Dresden 

protocol 3 mW/cm² intensity, thus making it a far simpler proposition.

The future of corneal cross-linking
As mentioned above, there are several drawbacks associated with 

the Dresden protocol that many research groups have been working 

on overcoming. In our view, these alternatives will almost certainly 

be applied to the treatment of thin corneas. The ectasia-stabilizing 

effects of CXL protocols that leave the epithelium in place are also 

now approaching that of Dresden protocol cross-linking, as are high-

fluence, high-intensity accelerated protocols.35 We have recently shown 

in the laboratory that high-intensity accelerated CXL that delivers 

higher fluences than the Dresden protocol’s 5.4 J/cm² can provide 

Dresden protocol-like corneal strengthening.36 As preclinical and clinical 

experience with these protocols increases, the sub400 protocol can 

be further extended and validated to incorporate these advances. It is 

already the case that there is a high-fluence sub400 protocol update that 

involves 9 mW/cm² UV-A irradiation intensities (Hafezi et al., manuscript 

in preparation). The sub400 protocol has also been used successfully to 

cross-link a keratoglobus cornea using a slit lamp-based cross-linking 

method.37 Cross-linking at the slit lamp is an interesting approach 

because it permits CXL to be straightforwardly performed in an office 

or procedure room setting at the near-ubiquitous slit lamp, which brings 

cost, resource and general access to the procedure benefits relative to 

CXL performed in an operating theatre.38

Conclusions
The customization of CXL protocols to individual patient stromal 

thicknesses and the corresponding adaption of irradiation time using the 

sub400 protocol has simplified the process of cross-linking thin corneas. 

In addition, the sub400 protocol has expanded the procedure to patients 

with ultra-thin corneas – as low as 200 µm – that were too thin to be 

cross-linked by previous CXL protocols. Future advances in CXL protocols 

can also be adapted to the sub400 protocol, meaning that thin corneas 

can continue to be cross-linked safely and accurately in a customized 

manner using future gold-standard procedures, whatever they may be. ❑
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