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Dry eye disease (DED) affects tens of millions of patients everyday. Bench and clinical research, along with advancements in clinical 
diagnostic modalities have deepened our appreciation of the heterogeneity of DED and called attention to the inflammatory processes 
that occur in many patients. This article provides a concise review of the known afferent and efferent pathways of the ocular surface 

inflammatory response in dry eye disease. Understanding the pathophysiology behind DED will give clinicians a better understanding of this 
complex disease state and hopefully lead to earlier diagnosis of the condition and improved treatment modalities. 
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Dry eye disease (DED) is the one of the leading causes of adult visits to ophthalmologists in the USA, 

with an estimated prevalence of 5–50% in adults over the age of 50 years.1 Studies have estimated over 

16 million patients have been diagnosed with DED, even in patients as young as 18–34.1 As the “Baby 

Boom” population continues to age, the importance of identifying and diagnosing DED has become 

paramount. In 2017, the Tear Film & Ocular Society (TFOS) Dry Eye Workshop (DEWS) Definition and 

Classification Subcommittee released a revised definition of DED,2 which acknowledges that ocular 

surface inflammation commonly plays an important role in the pathophysiology of the disease:

“Dry eye is a multifactorial disease of the ocular surface characterized by a loss of homeostasis of the 

tear film, and accompanied by ocular symptoms, in which tear film instability and hyperosmolarity, 

ocular surface inflammation and damage, and neurosensory abnormalities play etiological roles.”

Bench and clinical research, along with advancements in clinical diagnostic modalities have deepened 

our appreciation of the heterogeneity of DED and called attention to the inflammatory processes that 

occur in many patients.2 Ancillary testing to aid in the evaluation of inflammation in patients with DED 

may include conjunctival biopsy, impression cytology, and identification of inflammatory biomarkers 

such as MMP-9, human leukocyte antigen DR-1 (HLA-DR-1), and intercellular adhesion molecule 1 

(ICAM-1) in tear and impression cytology samples. Understanding the normal anatomy of the ocular 

surface and the effects of the afferent and efferent pathways of DED will give clinicians a better 

understanding of the current rationale behind diagnostic methods and treatment options for this 

complex disease state.

Normal anatomy
The ocular surface is comprised of the cornea, conjunctiva, accessory lacrimal glands, and meibomian 

glands. The main lacrimal gland, the ocular surface, and their neural interconnections make up the 

lacrimal functional unit,3 and secrete fluids that create a complex tear film to help maintain ocular 

surface homeostasis. Anti-microbial molecules, immunoglobulins, immunomodulators, and mucins 

secreted by conjunctival goblet cells are all important tear film constituents which help regulate ocular 

immune homeostasis. Resident monocytes, macrophages, neutrophils, dendritic cells, Langerhans cells, 

natural killer cells, regulatory T cells, and effector T cells on the ocular surface also help mediate immune 

homeostasis. Disruption of any element of the lacrimal functional unit can lead to tear film instability, 

increased tear film osmolarity, and can trigger an inflammatory response on the ocular surface.

Afferent wing of the ocular surface inflammatory response in dry 
eye disease
A variety of extrinsic and intrinsic stressors may disrupt the lacrimal functional unit and lead to 

tear hyperosmolarity. Potential stressors include low humidity environments, topical medications, 

mechanical forces, desiccation, infection, aging, and dysfunctional tear secretion. Tear film instability 
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and hyperosmolarity can generate an innate immune response, which 

provides first-line non-specific defense and inflammatory reactions. The 

initiation of innate immune responses is mediated by pattern-recognition 

receptors, such as toll-like receptor 4, which has increased expression in 

murine models of induced DED.4 Receptor recognition triggers activation of 

inflammasomes, such as NLRP3 and NLRP6, which are activated in human 

corneal epithelial and murine models of DED, and subsequent secretion of 

proinflammatory cytokines such as interleukin-1 beta (IL-1β).5

In addition to generating an innate immune response, hyperosmolar 

stress generates a proinflammatory microenvironment on the ocular 

surface. In vitro, rat, and murine models have demonstrated that ocular 

surface hyperosmolar stress activates mitogen activated protein kinases,6,7 

stimulates the expression of cytokines (IL-6, IL-8, IL-1a, IL-1β, TNF-a),6–9 

and increases the production of matrix metalloproteinases (MMP-9, 

MMP-1, MMP-13, MMP-3).6,7,10 In vitro studies have also demonstrated that 

hyperosmolarity can induce apoptosis in cultured corneal epithelial cells,11 

and experimentally induced DED in murine models has also demonstrated 

apoptosis of ocular surface tissue cells.12

Hyperosmolar stress can trigger an adaptive immune response through 

overexpression of HLA-DR in the conjunctival epithelium13 and increased levels 

of chemokines such as CCL20, CXCL9, CXCL10, and CXCL11 in the tear film 

and ocular surface.14,15 These chemokines and receptors promote activation of 

antigen presenting cells, especially corneal dendritic cells,16 and recruitment 

of inflammatory mediators. Increased corneal lymphangiogenesis along with 

increased honing of antigen presenting cells (APCs) to draining lymph nodes 

have been observed in murine models of induced DED.17 Once they are in 

draining lymph nodes, APCs then prime naïve T cells, presumably to unknown 

ocular surface antigens.18 Primed effector Th1, Th17, and natural killer (NK) 

cells travel back to the ocular surface, where they secrete interferon-gamma 

(IFNg) and IL-17.19–22

Efferent wing of the ocular surface inflammatory 
response in dry eye disease
Secretion of IFNg by Th1 and NK cells promotes loss of conjunctival goblet 

cells, which nurture the tear film through the provision of proteins and 

mucin. In murine culture models, it has been observed that even low 

exposure to IFNg results in structural changes in goblet cells and reduced 

proliferation.23 In murine models, exogenous administration of IFNg and 

induced DED result in decreased goblet cell density.24,25 Compared to 

healthy individuals, subjects with tear dysfunction have been observed to 

have increased expression of conjunctival IFNg, with higher levels of IFNg 
correlating with increased goblet cell loss.26 In addition to promoting loss 

of conjunctival goblet cells, it has been demonstrated in murine models 

of Sjögren’s Syndrome that IFNg also has a role in inducing lacrimal acinar 

apoptosis through caspase induction.27

While IFNg has been implicated in conjunctival goblet cell and lacrimal 

acinar loss, IL-17 secreted by Th17 cells plays an important role in corneal 

barrier disruption and induction of matrix metalloproteinase production.21 

Matrix metalloproteinases are enzymes involved in extracellular matrix 

degradation and, on the ocular surface epithelium, they promote barrier 

disruption by destroying tight junctions. Desiccating stress stimulates 

increased corneal epithelial levels of MMP-1, -3, -9, and -10 in murine 

models of DED.28 MMP-9 has especially been implicated in the pathogenesis 

of DED as MMP-9 knockout mice are more resistant to corneal epithelial 

disruption than wildtype controls in models of induced DED.29 Investigations 

using impression cytology have demonstrated that patients with dry eye 

have significantly higher levels of MMP-9 and IL-17 in the conjunctival 

epithelium compared to healthy controls.21 In murine models, desiccating 

stress leads to ocular surface infiltration by T cells and increased production 

of IL-17. Neutralization of IL-17 leads to reduced levels of MMP-9 and 

MMP-3 in vitro.21

Conclusion
Hyperosmolar stressors and tear film instability trigger the innate immune 

response and secretion of numerous cytokines to create a vicious cycle that 

perpetuates the signs and symptoms of DED. Understanding the afferent 

and efferent pathways of DED will give clinicians a better understanding 

of this complex disease state and hopefully lead to earlier diagnosis and 

improved treatment. Application of this greater comprehension of the 

mechanism of disease to clinical practice will hopefully lead to fewer 

patients suffering from undiagnosed DED. q
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