To view this page ensure that Adobe Flash Player version 11.1.0 or greater is installed.

Cataract and Cornea Update on Paediatric Refractive Surgery Amir Pirouzian, 1,2 Hesam Hashemian 2 and Mehdi Khodaparast 2 1. Johns Hopkins University, Wilmer Eye Institute, Baltimore, Maryland, US; 2. Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran Abstract Purpose: To provide a summary of the most recent evidence-based data on the paediatric refractive surgery. Methods: A review of the published studies from 1990 to 2015 was undertaken with emphasis on recent articles from 2010 to 2015. Results: Searching Scopus and PubMed, using the keywords of refractive surgery, phakic, paediatric, IOL, children and amblyopia alone or in various combinations yielded a total of about 48 articles on this topic from 1990 to 2015. Excluding review articles, fewer than 35 articles were included. Original research articles were only in the form of case reports/series on corneal laser surgery and phakic intraocular lens implantation or clear lens extraction. A total of fewer than 800 patients and 700 eyes had undergone a form of refractive surgery listed above. No randomised clinical trial (RCT) study was available on the topic. Age varied from 7 months to 17 years for non-corneal cross-linking studies. Most commonly performed operations were corneal laser ablative procedures (photorefractive keratectomy [PRK], laser-assisted sub-epithelial keratectomy [LASEK], laser-assisted in situ keratomileusis [LASIK]), phakic intraocular lens implantations (p-IOL, anterior or posterior chamber) and clear lens extraction. The indications for surgical intervention were for refractive – high amplitude iso-ametropic or anisometropic – amblyopia in the setting of the previously failed medical interventions and spectacle intolerance or non-compliance (physical or neurobehavioral in nature) and high accommodative esotropia with/without amblyopia. The main objective of the studies was to assess for visual acuity gained or lost following surgery and for correction of strabismus, i.e. achieving orthophoria. Further search on the keywords ‘cross-linking, cornea, rings and children’ from the same databases resulted in 130 articles. No RCT study was available on the topic. Age varied from 7 months to 17 years for non-corneal cross-linking studies. The focus of the most recent refractive surgery articles has been on the treatment and stabilisation of irregular myopic astigmatism from kerato-ectatic conditions by means of corneal cross-linking and intrastromal ring/in-lay implantation. Discussion: Refractive surgery remains a controversial topic in paediatric age population. However, the evidence clearly supports refractive surgery for treatment of children with refractive amblyopia and for treatment of accommodative esotropia in children unable or unwilling to wear spectacles or contact lenses. Conclusion: Consensus exists among published authors that refractive surgery may be considered in children with refractive amblyopia after exhausting various therapeutic medical options for amblyopia. Published authors have universally endorsed undertaking prospective multi-centred RCTs to conclusively establish the long-term safety and efficacy of various types of refractive surgery in the paediatric patients of different age groups. Keywords Children, myopia, refractive surgery, laser, intraocular lens, anisometropia, cross-linking, amblyopia, strabismus, paediatric, ametropia, phakic, keratoconus Disclosure: Amir Pirouzian, Hesam Hashemian and Mehdi Khodaparast have nothing to disclose in relation to this article and do not report any financial interest in any reported items. The principal author takes responsibility for the integrity of the data and the accuracy of the data analysis. No funding was received in the publication of this article. Compliance with Ethical Guidelines: This study involves a review of the literature and did not involve any studies with human or animal subjects performed by any of the authors. Open Access: This article is published under the Creative Commons Attribution Noncommercial License, which permits any non-commercial use, distribution, adaptation and reproduction provided the original author(s) and source are given appropriate credit. Received: 28 September 2015 Accepted: 20 November 2015 Citation: European Ophthalmic Review 2015;9(2):104–10 Correspondence: Amir Pirouzian, Wilmer Eye Institute, 600 N Wolfe Street, Baltimore, MD 20027, US. E:; Subsequent to the first published feasibility study of photorefractive keratectomy (PRK) on treatment of highly anisometropic, myopic and hyoperopic, amblyopia in children by Singh et al. in 1994, a slew of articles on corneal laser refractive and lens-based intraocular surgery for treatment of paediatric refractive amblyopia in select clinical settings have followed. 1 Whereas modern refractive surgery in adults has taken monumental and giant leaps at times in the past 2 decades driven by ever-incessant demand for achieving better outcomes, faster recovery and fewer potential operative complications, paediatric ophthalmology community and institutions have been struggling with the quintessential factors of safety of refractive surgery in children, 2 general anaesthesia, added costs of having laser platforms in or near the operating room 104 theatre and the legal liability stemming from performing refractive surgery in children when such procedures are not US Food and Drug Administration (FDA)-sanctioned. As a result, the focus of the main body of published work has been on establishing the efficacy and safety of refractive surgery in a very select group of visually impaired children. The principal method of proving efficacy has been on showing a gain in the best-corrected visual acuity (BCVA) in an amblyopic eye when conventional treatments have been tried and failed. Lack of visually compromising events following surgery has been used as an index of safety. Recent data also add to the support of refractive surgery for treatment of accommodative esotropia and for early interventional treatment of keratoectatic diseases in children. TOU C H ME D ICA L ME D IA