Antibiotic Resistance Trends Among Ocular Pathogens in the US—Cumulative Results from the Antibiotic Resistance Monitoring in Ocular Microorganisms (ARMOR) Surveillance Study

Penny A Asbell and Christine M Sanfilippo

Antibiotic resistance among ocular pathogens is a public health concern. The multicenter, prospective Antibiotic Resistance Monitoring in Ocular microorganisms (ARMOR) study is an ongoing surveillance study designed to report on antibiotic resistance rates and trends among Staphylococcus aureus, coagulase-negative staphylococci (CoNS; includes Staphylococcus epidermidis), Pseudomonas aeruginosa, and Haemophilus influenzae isolates from ocular infections. Results for more than 4,000 isolates collected from 2009–2015, representing 7 years of ARMOR, were recently presented. More than a third of S. aureus and almost half of all CoNS isolates were found to be resistant to methicillin. Staphylococcal isolates also showed high levels of multidrug resistance (resistance to ≥3 antibacterial drug classes) with 76.4% and 73.7% of methicillin-resistant S. aureus (MRSA) and methicillin-resistant CoNS (MRCoNS) isolates, respectively, demonstrating multidrug resistance. Resistance among S. pneumoniae was notable for azithromycin (36.8%) and for penicillin (34.0%), whereas P. aeruginosa and H. influenzae were generally susceptible to the antibiotic classes tested. Longitudinal analyses demonstrated a small decrease in methicillin resistance among S. aureus over the 7-year study period, which may be a result of improved antibiotic stewardship. Continued surveillance of antibiotic resistance among ocular pathogens is warranted.

Keywords
ARMOR, surveillance study, antibiotic resistance, ocular infections, Staphylococcus aureus

Disclosure: Penny A Asbell is a consultant to Perrigo and Kurobe, and participates in advisory boards for Valeant/Bausch + Lomb. She is a speaker on continuing medical education topics at professional meetings for Vindico. Christine M Sanfilippo is an employee of Bausch + Lomb.

Acknowledgment: Medical writing assistance was provided by Katrina Mountfort and Michelle Dalton for Touch Medical Media, supported by Bausch + Lomb, a division of Valeant Pharmaceuticals International Inc.

Authors: All named authors meet the International Committee of Medical Journal Editors (ICMJE) criteria for authorship of this manuscript, take responsibility for the integrity of the work as a whole, and have given final approval to the version to be published.

Open Access: This article is published under the Creative Commons Attribution Noncommercial License, which permits any noncommercial use, distribution, adaptation, and reproduction provided the original author(s) and source are given appropriate credit.

Received: February 16, 2017
Accepted: March 9, 2017
Citation: US Ophthalmic Review 2017;10(1):35–8
Corresponding Author: Penny A Asbell, MD, MBA, Cornea Service and Refractive Surgery Center, Icahn School of Medicine at Mount Sinai, 1190 Fifth Avenue, Annenberg Bldg 22-12, New York, NY 10029, US. E: penny.asbell@mssm.edu

Support: The publication of this article was supported by Bausch + Lomb, a division of Valeant Pharmaceuticals International Inc., who were given the opportunity to review the article for scientific accuracy before submission. Any resulting changes were made at the author’s discretion.
infections, with both *S. aureus* and CoNS frequently isolated from conjunctivitis, keratitis, endophthalmitis, and blepharitis.¹

There has been a dramatic rise in the prevalence of methicillin-resistant staphylococci in ophthalmic infections. A study of *S. aureus* isolates from eye infections submitted to The Surveillance Network by more than 200 laboratories in the US from January 2000 to December 2005 showed that the proportion of MRSA increased from 29.5% in 2000 to 41.6% in 2005.¹ Microbial keratitis is recognized as a significant sight-threatening complication that may result from refractive surgery with a reported incidence ranging from 0% to 1.5%.² Solomon et al. reported an incidence of one infection for every 2,131 refractive surgery procedures in 2004, which increased to an incidence of one infection every 1,102 procedures in 2011; MRSA was the most common organism cultured.³ High levels of methicillin resistance were also reported for *S. aureus* (51.9%) and *S. epidermidis* (56.0%) isolates collected from ocular infections between 2003 and 2008 at the Bascom Palmer Eye Institute.⁴ In another study, Gentile et al. reported increasing methicillin resistance among staphylococci in their retrospective study of endophthalmitis cases from 1987 to 2011. Methicillin resistance increased from 18% for *S. aureus* and 31% for *Staphylococcus epidermidis* in 1987 to 55% for both in 2011.³ MRSA infection and other multidrug-resistant bacterial pathogens can be detrimental to vision and represent a major therapeutic challenge.⁵,⁶

There is a paucity of studies that monitor antibiotic resistance among ocular bacteria, and this represents a substantial unmet need. This article aims to describe ocular antibiotic resistance surveillance programs in the US, and to present the latest findings of the Antibiotic Resistance Monitoring in Ocular micRoorganisms (ARMOR) study, the only nationwide ongoing surveillance study specific to ocular bacterial pathogens.

Ocular TRUST

In the past decade, surveillance data have provided clinicians with a large, nationwide picture of resistance and susceptibility patterns in ocular infections. The Tracking Resistance in the United States Today (TRUST) study was developed with the objective of evaluating *in vitro* susceptibility of bacterial isolates collected yearly from approximately 200 clinical laboratories throughout the US.⁷ At the time of inception, ocular isolates were not a primary consideration although ocular isolates were periodically submitted.

In order to monitor the growing problem of ocular antibiotic resistance, the program was expanded to include an ocular-specific substudy, the Ocular TRUST study.¹¹ The Ocular TRUST study objectives were to annually evaluate *in vitro* antimicrobial susceptibility of *S. aureus*, *S. pneumoniae*, and *H. influenzae* isolated from ocular infections to fluoroquinolones (ciprofloxacin, gatifloxacin, levofloxacin, moxifloxacin), macrolides (azithromycin), aminoglycosides (tobramycin), penicillins, dicydrofloxilacte reductase inhibitors (trimethoprim), and polypeptides (polymyxin B). The initial study reported on ocular isolates collected from 2005 through 2006 from 35 institutions across the US and found 16.8% of *S. aureus* isolates to be methicillin-resistant; intermediate and full resistance to penicillin, azithromycin, and trimethoprim was seen in 18.3%, 22.4%, and 22.4% of pneumococcal isolates, respectively; and no resistance was reported among *H. influenzae* isolates.¹¹

Reports from the second and third years of the study (Ocular TRUST 2 and Ocular TRUST 3) showed an increase in methicillin resistance in *S. aureus* to almost 50% by 2008. The Ocular TRUST 2 and Ocular TRUST 3 studies included surveillance of CoNS, among which methicillin resistance was found to be 62.0% in 2008.¹²¹³ The investigators concluded that continued antibacterial surveillance of ocular pathogens should be undertaken.

ARMOR

The multicenter, prospective ARMOR study began in 2009 and was designed to survey antibiotic resistance among *S. aureus*, CoNS, *S. pneumoniae*, *H. influenzae*, and *P. aeruginosa* isolates from ocular infections. ARMOR is currently ongoing, and is the only multicenter, national survey of antibiotic resistance patterns among bacterial isolates specific to ophthalmology.¹⁴

Participating centers (including eye centers and both university and community hospitals) were invited to submit clinically relevant bacterial isolates cultured from both topical and intraocular infections. Bacterial isolates were sent to an independent, central laboratory if they were considered a causal factor in the ocular infection. The antibacterial minimum inhibitory concentrations (MICs; i.e., the lowest concentrations that inhibit growth) were determined for each antibiotic class by broth microdilution using the Clinical and Laboratory Standards Institute (CLSI) procedures with frozen antimicrobial microtiter panels.¹⁴ Antibiotics tested included fluoroquinolones (ciprofloxacin, moxifloxacin, gatifloxacin, deslorofloxacin, levofloxacin, and ofloxacin), macrolides (azithromycin), aminoglycosides (tobramycin), lincosamides (clindamycin), cephalosporins (ceftriaxone and ceftazidime), penicillins (oxacillin, penicillin, and piperacillin), carbapenems (imipenem), dicydrofloxilacte reductase inhibitors (trimethoprim), polypeptides (polymyxin B), amphenicols (chloramphenicol), tetracyclines (tetracycline), and glycopeptides (vancomycin). Not all antibiotics were tested in all years of ARMOR. As breakpoints do not exist for topically applied ophthalmic antibiotics, CLSI breakpoints, which are established from *in vitro*, clinical, and pharmacokinetic pharmacodynamic study data of systematically administered antimicrobial agents, were used (where available) to classify isolates as susceptible, intermediate, or resistant.⁶ Staphylococci were classified as methicillin-resistant or methicillin-susceptible based on susceptibility to oxacillin. Changes in the resistance rate over time were determined using the Cochran-Armitage test for linear trends in proportions.¹⁵

Data from the first 5 years of ARMOR¹⁴ for isolates (n=3,237) collected from 2009 through 2013 showed methicillin resistance was common among staphylococcal isolates from ocular infections, but did not increase over the 5-year study period (p=0.22). Methicillin resistance was found among 493 *S. aureus* isolates (42.2%) and 381 CoNS isolates (49.7%). Methicillin-resistant isolates were likely to be concurrently resistant to fluoroquinolones, aminoglycosides, or macrolides (p<0.001). Multidrug resistance, defined as resistance to three or more antibacterial drug classes, was found in 428 MRSA isolates (86.8%) and 381 methicillin-resistant CoNS (MRCoNS) isolates (77.3%). *S. pneumoniae* showed significant resistance to azithromycin (113 isolates, 34.2%) and penicillin (105 isolates, 31.8%), whereas resistance among *P. aeruginosa* and *H. influenzae* was low against the tested antibiotics. Staphylococcal isolates were more likely to be methicillin-resistant if they were collected from elderly patients or from patients in the southern US (p<0.001). Small but significant decreases in resistance were found to some antibiotics over the 5-year study period. Ciprofloxacin resistance decreased among CoNS and MRCoNS, and tobramycin resistance decreased among CoNS (p<0.03).
When antibiotic resistance rates were evaluated over time, several trends were observed (see Figure 2). Notably, a small but significant decrease in resistance to methicillin (oxacillin) was reported (p=0.001) among S. aureus isolates that had not been evident in the 5-year dataset. By contrast, methicillin resistance did not decrease for CoNS over the 7-year time frame. There were also small but significant decreases in resistance of S. aureus against azithromycin, ciprofloxacin, and tobramycin (p<0.001); MRSA against tobramycin (p=0.022); CoNS against ciprofloxacin (p=0.006); and P. aeruginosa against ciprofloxacin (p=0.013) and tobramycin (p=0.019). In addition, MRCoNS showed a small but significant increase (p=0.021) in resistance against tobramycin. The largest change over time was in S. pneumoniae, which showed a significant increase (~two-fold) in resistance to azithromycin (p=0.025) over the 7-year study period. With the exception of the decrease in resistance to ciprofloxacin among CoNS, these changes had not been noted in the 5-year data. While resistance during the 7-year period was notable for several antibiotics, including that for trimethoprim among CoNS and MRCoNS, no other trends in resistance over time were noted.

Besifloxacin, a C8-chloro-fluoroquinolone, was developed for topical ophthalmic use only and launched as Besivance (besifloxacin ophthalmic suspension 0.6%) in the US in 2009. As no systemic formulation exists for besifloxacin, there are no systemic breakpoints available on which to classify bacterial isolates as susceptible, intermediate, or resistant to besifloxacin. To evaluate the potential efficacy of, or resistance to, besifloxacin, MIC₅₀ data (MIC inhibiting the visible growth of 90% of all isolates) for besifloxacin was compared with that of other antibiotics, including other fluoroquinolones. Comparisons of cumulative MIC₅₀ values showed wide variations within the fluoroquinolone class of antibiotics, particularly against staphylococci, with newer fluoroquinolones (besifloxacin, moxifloxacin, and gatifloxacin) having a lower MIC₅₀ compared with older fluoroquinolones (ciprofloxacin), and with vancomycin and besifloxacin demonstrating the lowest MIC₅₀ (see Table 1). These differences were most apparent when considering MIC₅₀ values for pathogens demonstrating the lowest MIC₅₀ among the fluoroquinolones, suggesting that besifloxacin may have similar clinical activity against these strains to vancomycin, although further studies are needed. Of the antibiotics tested, besifloxacin had the lowest MIC₅₀ for S. pneumoniae, while ciprofloxacin had the lowest MIC₅₀ values for P. aeruginosa and H. influenzae isolates. There were no changes in besifloxacin MIC₅₀ values over the 7-year collection period, suggesting there have been no meaningful changes in bacterial susceptibility to besifloxacin since its launch in 2009.
Conclusions

Limitations of the ARMOR surveillance study include the potential for sampling bias owing to the infrequent practice of culturing bacterial pathogens, and the application of systemic breakpoints to define isolates as susceptible or resistant to ocular treatment. Systemic breakpoints are derived from pharmacokinetic and pharmacodynamic studies of systemic infections, and their value when assessing the susceptibility of ocular isolates exposed to topically applied antibiotics remains unclear. However, in the absence of topical, ophthalmic breakpoints, systemic breakpoints remain a useful means of determining the antibiotic resistance status of isolates from ophthalmic infections. Another consideration is that while antibiotic concentration in external ocular tissue upon topical application may exceed the MIC needed for common ocular isolates, topical antibiotics are rapidly eliminated from tears due to tear turnover.

As with their systemic counterparts, ocular pathogens are demonstrating high in vitro resistance to antimicrobial agents. Vancomycin remains effective in vitro against staphylococcal isolates, but it is not commercially available as a topical formulation and must be compounded for use. Although newer drugs, such as besifloxacin, demonstrate significant in vitro activity against many resistant bacterial pathogens, the resistance of staphylococcal isolates to older fluoroquinolones is cause for concern. The fact that methicillin resistance is decreasing among S. aureus, is, however, a promising finding that may suggest an increased awareness of the problems of antibiotic resistance and also improved antibiotic stewardship. Indeed, in terms of systemic infections, increased education regarding judicious antibiotic use by limiting overprescription of antibiotics, cycling between antibiotic classes, and using combination therapies has led to a decrease in antibiotic resistance in systemic infections.18–22

The ARMOR study is the only nationwide evaluation of antibacterial susceptibility of common ocular pathogens in the US, and now includes almost 1,000 additional isolates beyond those included in the 2015 evaluation.13 Although trends over the past 7 years show a small but significant decrease in S. aureus resistance to some antibiotic classes, and confirmed the previous finding of a decrease in resistance among CoNS to ciprofloxacin, some increases in resistance were also noted. For instance, small but significant increases in resistance were noted among MRCoNS to tobramycin and among S. pneumoniae to azithromycin. Together these findings underscore the need for continued surveillance of antibiotic resistance trends and to help guide treatment decisions for ocular bacterial infections.

Table 1: **In vitro MIC** values (µg/mL) for ocular bacterial isolates

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Staphylococcus aureus</th>
<th>CoNS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (n=4,483)</td>
<td>MRSA (n=567)</td>
<td>MSSA (n=916)</td>
</tr>
<tr>
<td>Vancomycin</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Besifloxacin</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Gatifloxacin</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>>512</td>
<td>>512</td>
</tr>
<tr>
<td>Trimethoprim/sulfamethoxazole</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Strptococcus pneumoniae (n=421)</th>
<th>Pseudomona aeruginosa (n=524)</th>
<th>Haemophilus influenzae (n=513)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Besifloxacin</td>
<td>0.06</td>
<td>4</td>
<td>0.03</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>0.12</td>
<td>4</td>
<td>0.03</td>
</tr>
<tr>
<td>Gatifloxacin</td>
<td>0.25</td>
<td>2</td>
<td>0.015</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>1</td>
<td>0.5</td>
<td>0.015</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>32</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>>128</td>
<td>256</td>
<td>2</td>
</tr>
<tr>
<td>Penicillin (oral)</td>
<td>1</td>
<td>NT</td>
<td>>4</td>
</tr>
</tbody>
</table>

*Includes 972 Staphylococcus epidermidis isolates. CoNS = coagulase-negative staphylococci; MRCoNS = methicillin-resistant CoNS; MRSa = methicillin-resistant Staphylococcus aureus; MSCoNS = methicillin-susceptible CoNS; MSSA = methicillin-susceptible S. aureus; NT = not tested.

12. Asbell PA, Sahm DF, Longitudinal nationwide antimicrobial susceptibility surveillance in ocular isolates results from Ocular TRUST 2, Presented at: American Society of Cataract and Refractive Surgery Annual Meeting, April 28, 2008; San Diego, CA.